
NUMERICAL TECHNIQUES 

Abstract — This paper deals with the application of 
multiscale finite element methods to the solution of 
electromagnetic-field problems including fine heterogeneous 
media. Two approaches are considered, respectively based on 
the introduction of modified shape functions and on the 
decomposition of the unknown field into a coarse and a fine 
term. Results show the capabilities of the considered 
multiscale methods of reproducing spatial behavior of field 
quantities in comparison with standard finite element solution. 

I. INTRODUCTION 

Fine periodic structures frequently appear in the 
analysis of electromagnetic problems. Typical examples are 
the heterogeneous magnetic and dielectric media (e.g. 
composite materials) whose components are suitably mixed 
to obtain desired macroscopic properties. Other examples 
of fine periodic structures are given by passive magnetic 
shields, where periodicity is determined by the presence of 
regular holes to enhance thermal energy dissipation. 

The numerical analysis of electromagnetic problems 
including fine periodic structures is made difficult by the 
presence of several spatial scales, all affecting the overall 
response of the system. If standard numerical techniques 
are adopted to solve these multiscale problems, the number 
of unknowns of the resulting algebraic system becomes too 
large, rapidly reaching the limits of computing resources. 
For these reasons, multiscale techniques have been 
introduced with the aim of separating the different spatial 
scales, but keeping the influence of each scale on the other 
ones. Examples of application of the multiscale techniques 
can be found in different scientific and engineering 
disciplines, such as material science, mechanics, 
fluidodynamics and electromagnetics [1-4]. 

In this work, we have implemented and compared two 
multiscale finite element approaches, making reference to 
the Helmoltz equation with highly oscillatory coefficients, 
determined by material properties changing at the finer 
scale. The results obtained with the multiscale finite 
element methods will be also compared with those obtained 
by an alternative approach based on a homogenization 
technique with local correctors [5-7]. 

II. PROBLEM DESCRIPTION 

We refer to a 2-D bounded domain S, with a coordinate 
system s=(x1, x2). S is assumed to be highly periodic, that is 
complex conductivity   and magnetic permeability  vary 

with period    1 20, 0,Y Y Y  . The spatial period Y is 

defined as the elementary cell, and constitutes an 
intermediate spatial scale between the smallest one (defined 
by the spatial variation of the electromagnetic properties 

within the cell) and the largest one (defined by the entire 
bounded domain S). Assuming the magnetic field directed 
along the perpendicular direction (z-axis) and considering 
sinusoidal supply conditions (angular frequency ), the 
following weak form equation in the harmonic domain 
holds 
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 the magnetic field (expressed as 

phasor). Non homogeneous Dirichlet boundary conditions 
( 0H H  on S ) complete the problem description. 

Equation (1) is handled by multiscale finite element 
techniques, either by defining oscillating local shape 
functions at the elementary cell level (Method #1) or by 
obtaining the global solution as the sum of a fine and a 
coarse term (Method #2). In both methods a coarse mesh 
( c ) is identified by the multiple repetition of the 

elementary cell (Mc coarse elements with Nc nodes) and a 
fine mesh ( f ) is defined within each cell (Mf coarse 

elements with Nf nodes for each cell). The standard 
computation of (1) would require the solution of a system 
of order NfNc. 

A. Method #1 

Considering a coarse element K, the following set of 
problems (1) is solved, one for each vertex i: 

0iL    with   (0)
i i    on K      (2) 

being L the differential operator defined by problem (1) and 

i  the local shape function associated to vertex i of the 

coarse element K [1, 2]. Having determined the values of 
shape functions i  on each node of the fine mesh, the 

following coarse scale problem is solved: 
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being  the unknowns on the Nc nodes of the coarse mesh, 
and w the corresponding test functions. The value of H in a 
generic point of domain S is then obtained as i iiH    , 

where rapid spatial oscillations are resolved by local shape 
functions i . From the computational viewpoint, this 

method requires the preliminary solution of V systems 
(being V the number of coarse element vertices) of order Nf, 
plus the solution of a system of order Nc. 
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B. Method #2 

The magnetic field H is written as the sum of a fine 
term Hf and a coarse term Hc [3, 4]. By defining coarse (w) 
and fine (v) test functions, two problems derives from (1): 
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In the first one, defined on the coarse element K, Hf is 
determined as a function of Hc. This relation is used in the 
second problem defined on the entire domain S. Since Hf is 
assumed to be null on boundary K , Hc verifies the 
boundary conditions H = H0 on S . The solution of 
problems (4) provides Hc on each node of the coarse mesh 
and Hf on each node of the fine mesh. 

The computational burden is similar to Method #1, 
requiring the preliminary solution of V systems (being V the 
number of coarse element vertices) of order Nf, plus the 
solution of a system of order Nc.  

III. EXAMPLES 

The two multiscale finite element methods have been 
compared in the analysis of two fine periodic structures. 
The first one simulates the cross section of a magnetic core 
made of soft ferrite, modeled by the multiple repetition of 
elementary cells, representing magnetic grains (size equal 
to 10 µm) surrounded by a dielectric layer (thickness equal 
to 50 nm). A sinusoidal magnetic field (amplitude H0, 
frequency equal to 1 MHz) is applied perpendicularly to the 
cross section. The second example simulates a grid shield, 
where the square elementary cell (size equal to 50 mm) is 
constituted of conductive material and has an internal hole 
(size of 30 mm). A sinusoidal magnetic field (amplitude H0, 
frequency equal to 50 Hz) is applied perpendicularly to the 
shield. 

For both cases, the results obtained by the two 
multiscale finite element methods (MsFEM) are compared 
with the standard FEM solution and with the solution 
obtained by a homogenization technique with local 
correctors [7]. Figures 1 and 2 show the spatial distribution 
of magnetic field computed by the different approaches. 
The goodness of the spatial reconstruction is proved for 
both MsFEM methods. 

In the full paper an extended numerical analysis will be 
presented, putting in evidence the potentiality of the 
considered multiscale methods. 

 
Fig. 1. Example #1: spatial distribution of the magnetic field along the 
material cross section. 

 
Fig. 2. Example #1: spatial distribution of the magnetic field along the 
planar grid shield. 
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